TRACE LEVEL DETERMINATION OF TOXIC METALS IN GEOLOGICAL MATERIALS BY ICP-OES USED IN THE FOOD INDUSTRY

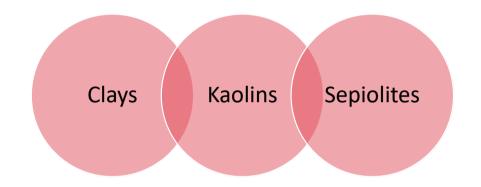
María Fernanda Gazulla

Instituto de Tecnología Ceramica (Spain) 2nd Edition of WORLD CONGRESS ON GEOLOGY & EARTH SCIENCE

Osaka (Japan) , 4 – 6 October 2021

1. INTRODUCTION

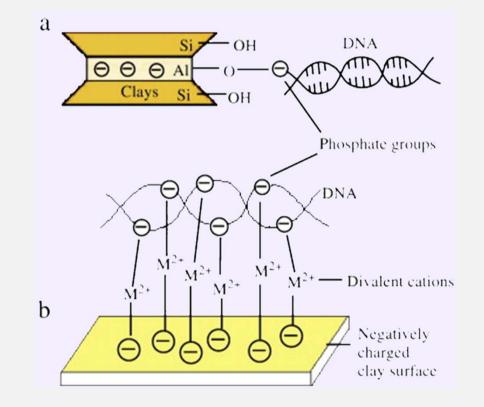
Many geological material are used in the food industry as <u>additives</u> or as processing aids


- Clays and kaolins are used for wine and vegetable oil clarification
- Calcium carbonates and potassium nitrates are used as additives for food preservation or enhancement of some properties

[1] N. Worasith, B.A. Goodman, N. Jeyashoke, P. Thiravetyan, J. Am. Oil Chem. Soc. 2011; 88, 2005.

[2] L.F. Londoño-Franco, P.T. Londoño-Muñoz, F.G. Muñoz-García, Biotecnol. Sect. Agropecu. Agroind. 2016; 14(2), 145.

[3] Jaeckels, N.; Tenzer, S.; Meier, M.; Will, F.; Dietrich, H.; Decker, H.; Fronk, P.; LWT – Food Science and Technology, 2017, 75, 335


1. INTRODUCTION 1.1 PROCESSING AIDS

The properties that a geological material should present to be used as a processing aid are^{[4,5]:}

- High specific surface area
- Cation exchange capability
- Swelling degree

Mecanism of absorption

♦ jtc ¤

© ITC-AICE. 2021

[4] S. Servagent-Noinville, M. Revault, H. Quiquampoix, M. H. Baron, J. Colloid Interface Sci. (2000), 221, 273
[5] W. A. Yu, N. Li, D. S. Tong, C. H. Zhou, C. X. Lin, C. Y. Xu, Appl. Clay Sci. (2013), 80-81, 443


1. INTRODUCTION 1.2 ADDITIVES

- Calcium carbonate (CaCO₃)
 - Used in bakery, drinks, cereals or canned fruit.
 - Improve the digestibility of some food.

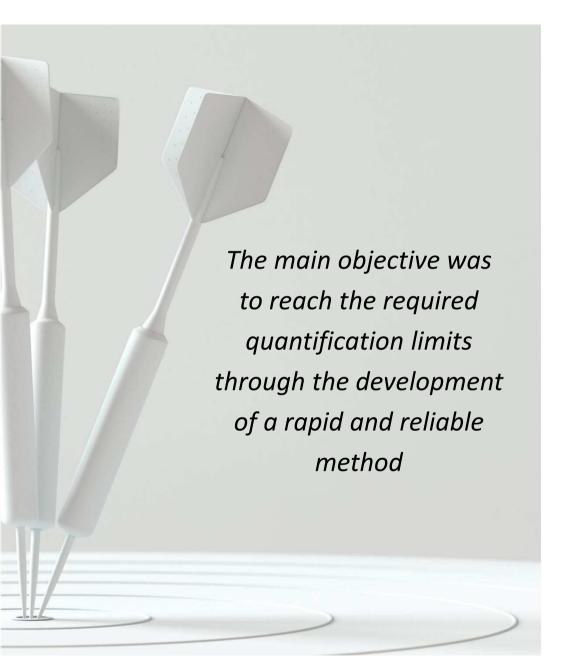
$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

$$CO_3^{2-} + H_3O^+ \leftrightarrow HCO_3^- + H_2O$$

$$HCO_3^- + H_3O^+ \leftrightarrow H_2CO_3 + H_2O$$

- Potassium nitrate (KNO₃)
 - Used to prevent meat industry, cheese, etc., from bacteria and fungus

[6] Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council Text with EEA relevance


1. INTRODUCTION

1.3. MAXIMUM PERMITTED LEVELS FOR SOME HEAVY METALS PRESENT IN FOOD ADDITIVES AND PROCESSING AIDS

Law Regulation	Additive	As (mg kg ⁻¹)	Cd (mg kg ⁻¹)	Cr (mg kg ⁻¹)	Hg (mg kg⁻¹)	Ni (mg kg ⁻¹)	Pb (mg kg ⁻¹)
	CaCO ₃	3	1	1	-	1	3
Regulation (EU) no. 231/2012	KNO ₃	3	-	1	1	1	2
,,	Bentonite	-	-	-	-	-	-
	Kaolinitic clay	3	2	-	1	-	70
Royal Decree	Bentonite	2	-	-	-	-	20
640/2015	Other materials used and not included	1	1	-	1	-	5
	CaCO ₃	3	-	-	1	-	5
Directive 2008/84/CE	KNO ₃	3	-	-	1	-	5
	Bentonite	2	-	-	-	-	20
	CaCO₃	3	-	-	-	-	3
	KNO₃	-	-	-	-	-	2
FAO and WHO(*)	General limits	Indicated by the manufacturer	1	-	1	-	2 (1 for high consumption)

(*) FAO and WHO Explanatory note evidences for the need to develop a method that avoids the dry-ashing procedure, due to the potential loss of metals and arsenic with high temperatures.

[7] Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council Text with EEA relevance [8] Joint FAO/WHO expert commitee on food additives (JECFA), *Limit test for heavy metals in food additive specifications. Explanatory note,* FAO Joint Secretariat, **2002**

2. OBJECTIVES

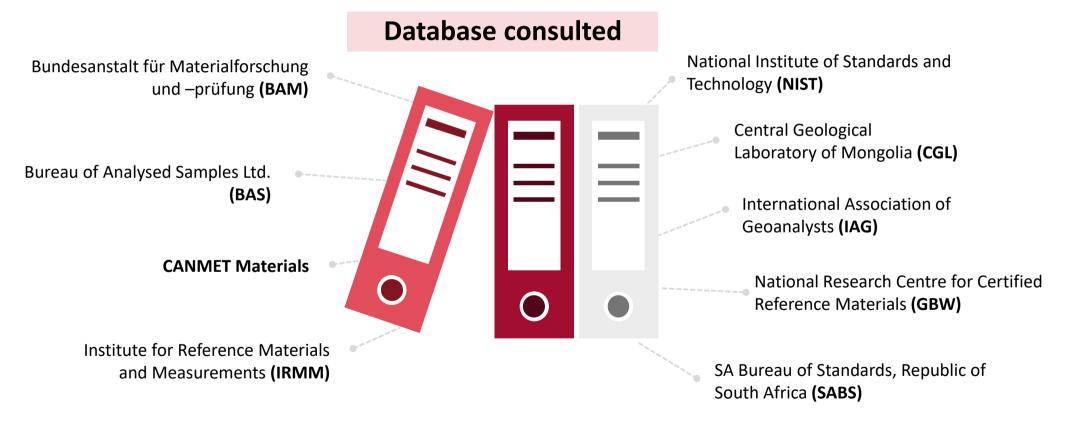
Reach the quantification limits required

Decrease the time of analysis to the minimum

Develop an environmentally friendly control method

3. EXPERIMENTAL PART

3.1. MATERIALS

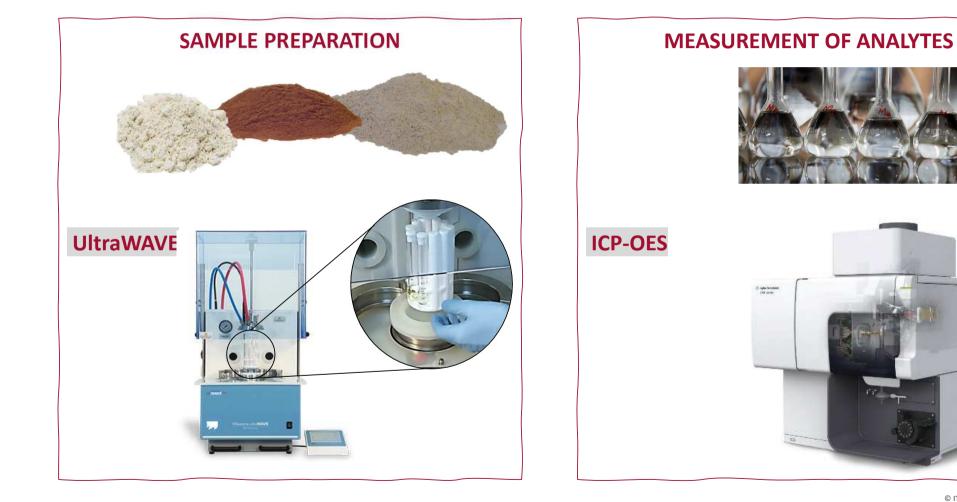

- Samples
 - Clay 1
 - Clay 2
 - Sepiolite

3. EXPERIMENTAL PART 3.1 MATERIALS

• Certified Reference Materials (CRM)

♦ jtc M

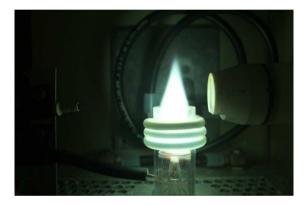
© ITC-AICE. 2021


3. EXPERIMENTAL PART 3.1 MATERIALS

• Certified Reference Materials (CRM)

Certified Refe	Pb (mg∙Kg-¹)	Ni (mg∙Kg-¹)	Cr (mg∙Kg-¹)	Cd (mg·Kg-¹)	Hg (mg·Kg- ¹)	As (mg∙Kg-¹)	
Interlaboratory Test for the Analysis of geological samples	GeoPT-24 (Londmyndian greywacke, OU-10)	26.9±0.9	17.7±0.5	34±1.2	2.8±0.4	-	-
(GeoPT) organised by IAG (International Association of	GeoPT-36a (Metal-rich sediment, SdAR-M2)	808±13	48.75±0.97	49.6±1.6	-	1.436±0.096	75.82±4.3
Geoanalysts) (United Kingdom)	GeoPT-40A (Calcareous organic-rich shale, ShTX-1)	6.05±0.58	74.92±2.56	29.65±0.26	2.02±0.12	-	15.05±0.8
	Granite (MGT-1)	24.81±0.69	5.76±0.28	182±7	(0.13)	-	2.28±0.2
	Basalt MBL-D	5.66±0.41	163±21	188±15	-	-	-
Laboratory of Mongolia (CGL) (Mongolia	Mercury Soil-2 (MS-2)	-	-	-	-	1.52±0.08	-
	Mercury Soil-3 (MS-3)	-	-	-	-	2.75±0.19	-
National Research Centre	GBW 07401 Soil	98±6	20.4±1.8	62±4	4.3±0.4	0.032±0.004	34 ± 4
ior certifie Reference	GBW 07103 Soil	31±3	2.3±0.8	3.6±0.9	0.029±0.009	0.0041±0.0012	2.1±0.4
Materials G.W. (China)	GBW 07405 Soil	552±29	40±4	118±7	0.45±0.06	0.29±0.03	412±16

3. EXPERIMENTAL PART 3.2 INSTRUMENTATION


3. EXPERIMENTAL PART3.3 DEVELOPMENT OF THE METHOD

Optimization of the sample preparation

- Sample weight
- Type and mixture of acids
- Addition of HF
- Volume of acid
- Digestion temperature
- Digestion time

Optimization of the measurement conditions

- Plasma power
- Plasma flow
- Nebulizer flow
- Peristaltic pump speed

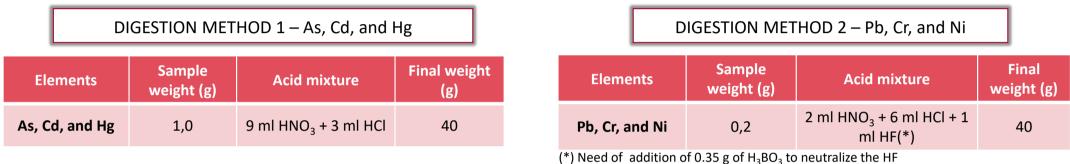
4. RESULTS4.1 OPTIMISATION OF SAMPLE PREPARATION

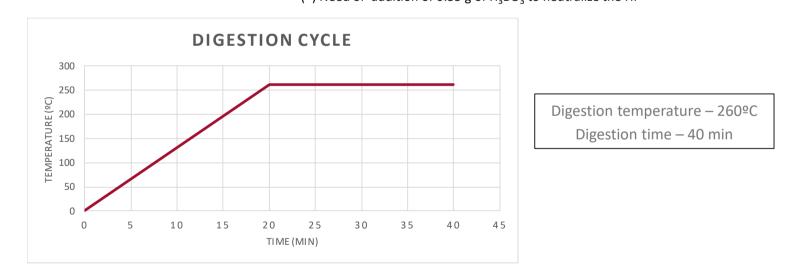
Variables and range studied

Variable studied	Range studied			
Sample weight (g)	0.1 - 2			
Nitric / Hydrochloric acid ratio	1/3 - 3/1			
Addition of HF (ml)	Yes (1 ml) / No			
Dilute to weight / final weight dilution (g)	25 - 50			
Temperature of digestion (°C)	220 - 260			
Digestion time (min)	15 - 45			

Discussion after the experiments for sample preparation optimisation

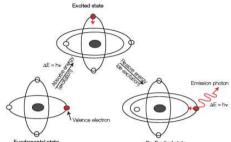
Sample weight (g)	Acid mixture	Comments	T
1,0	9 ml HNO ₃ + 3 ml HCl	Not all the analytes are extracted with this condition	a a
0,2	2 ml HNO ₃ + 6 ml HCl + 1 ml HF	The quantification limits needed for all the analytes are not reached	,


 here is not a unique digestion condition that permits de nalysis of all the analytes with
 the requires quantification limits


Necessity to have different digestion conditions for different elements

4. RESULTS

4.1 OPTIMISATION OF SAMPLE PREPARATION



"Same digestion cycle (time and temperature) but different acid mixtures"

4. RESULTS

4.2 OPTIMISATION OF MEASUREMENT CONDITIONS

Cr, Ni, Pb As, Cd Hg Plasma Power (kW) 1,2 1,5 1,4 Plasma Flow (L/min) 13,5 15,0 12,0 0,70 0,85 0,80 Nebulizer Gas Flow (L/min) Peristaltic Pump Rate (rpm) 12 15 10 Being able to measure such low quantities of Hg by ICP-OES, without Time used in the process of the necessity of using measurement by ICP-OES (including 30 min calibration, validation, and measurement hydride generation, is of all the analytes) challenging

4. RESULTS4.3 VALIDATION

Detection limit (L _D)	Quantification limit (L _Q)					
$L_D = 3,29s$	$L_Q = 10s$					
s = standard deviation						

Need of quantification limits
equal or lower than the
required values in the
legislation)

Uncertainty (U)	Method uncertainty (u_{method})
$U = k \cdot u_{method}$	$u_{method} = u_{V_R}^2 + u_{V_L}^2 + u_R^2$
k = 2	u_{V_R} = uncertainty of the certified value u_{V_L} = uncertainty of the measurement of the CRM u_R = uncertainty of the measurement of the sample

4. RESULTS 4.3 VALIDATION

• In order to compare the results obtained either with the certified value of the CRM or with values obtained by an independent technique, the difference between both (Δ_m) was compared with the related uncertainty ($U_{\Delta m}$)

$$\Delta_m = |c_m - c_{cert}|$$
$$u_{\Delta_m} = \sqrt{u_m^2 + u_{cert}^2}$$
$$U_{\Delta_m} = 2u_{\Delta_m}$$

 Δ_m = absolute value of the difference between the measured and the known value (certified or measured by an independent technique)

 c_m = measured value by ICP-OES

c_{cert} = certified value or value measured by an independent technique

 $u_{\Delta m}$ = combined uncertainty of the measured value and of the certified/measured by other technique value

 u_m = uncertainty of the measured value by ICP-OES

 u_{cert} = uncertainty of the certified value or value measured by an independent technique

4. RESULTS

4.3 VALIDATION

4.3.1 Measurement of the CRM by the new methodology by ICP-OES using UltraWAVE® for analyte extraction

			DIGESTION N	METHOD	1		DIGESTION METHOD 2					
	As (mg	∙kg⁻¹)	Cd (mg·kg ⁻¹)		Hg (mg∙kg⁻¹)		Cr (mg⋅kg⁻¹)		Ni (mg∙kg⁻¹)		Pb (mg·kg⁻¹)	
	Cert	Ехр	Cert	Ехр	Cert	Ехр	Cert	Ехр	Cert	Ехр	Cert	Ехр
GeoPT-24	-	-	2.8±0.4	3.1±1.0	-	-	34±1.2	33±4	17.7±0.5	18±3	26.9±0.9	26±3
GeoPT-36A	75.82±4.34	76.9±5.3	5.1±0.2	5.0±1.0	1.436±0.096	1.3±1.0	49.6±1.6	49±5	48.75±0.97	48 ±5	808±13	800±68
GBW07401	34±4	36±4	4.3±0.4	4.6±1.0	0.032±0.004	<1	62±4	66±5	20.4±1.8	22±3	98±6	101±10
GBW 07405	412±16	391±30	0.45±0.06	<1	0.29±0.03	<1	118±7	112±10	40±4	37±4	552±29	518±30
GBW 07103	2.1±0.4	2.4±1.0	0.029±0.009	<1	0.0041±0.0012	<1	3.6±0.9	3.3±1.0	2.3±0.82	1.5±1.0	31±3	28±3
Granite (MGT-1)	2.28±0.24	1.8±1.0	(0.13)	<1	-	-	182±7	178±15	5.76±0.28	5.0 ±1.0	24.81±0.69	26±3
Mercury Soil-2 (MS-2)	-	-	-	-	1.52±0.08	1.4±1.0	-	-	-	-	-	-
Mercury Soil-3 (MS-3)	-	-	-	-	2.75±0.19	2.6±1.0	-	-	-	-	-	-

4. RESULTS 4.3 VALIDATION

4.3.2 Calculation of the goodness of the method

	DIGESTION METHOD 1							DIGESTION METHOD 2					
	As (mg	s (mg·kg ⁻¹)		Cd (mg⋅kg⁻¹)		Hg (mg∙kg⁻¹)		Cr (mg∙kg⁻¹)		kg⁻¹)	Pb (mg·l	kg⁻¹)	
	Δ _m	U _{∆m}	Δ _m	U _{∆m}	۵ _m	U _{∆m}	۵ _m	U _{∆m}	۵ _m	U _{∆m}	۵ _m	U _{∆m}	
GeoPT-24	-	-	0.3	2.1	-	-	1.0	8.4	0.3	6.1	0.9	6.3	
GeoPT-36A	1.1	13.7	0.1	2.0	0.1	2.0	0.6	10.5	0.8	10.2	8	119	
GBW07401	2	11	0.3	8.2	-	-	4	13	1.6	7.0	5	23	
GBW 07405	34	83	-	-	-	-	6	24	3	11	34	83	
GBW 07103	0.3	2.2	-	-	-	-	0.3	2.7	08	2.6	3	8	
Granite (MGT-1)	0.5	2.1	-	-	-	-	4	33	0.8	2.1	1.2	6.2	
Mercury Soil-2 (MS-2)	-	-	-	-	0.1	2,0	-	-	-	-	-	-	
Mercury Soil-3 (MS-3)	-	-	-	-	0.15	2.04	-	-	-	-	-	-	

For all the elements analysed, $\Delta_m < U_{\Delta_m}$

There are no significant differences

4. RESULTS 4.3 VALIDATION

Comparison between the results obtained by ICP-OES and WD-XRF

There are no significant differences between the values obtained

The main difference between the two techniques is the quantification limit

	Clay	/ 1	Cla	iy 2	Sepiolite		
	WD-XRF	ICP-OES	WD-XRF	ICP-OES	WD-XRF	ICP-OES	
As (mg kg ⁻¹)	3 ± 2	4 ± 1	3 ± 2	3 ± 1	5 ± 2	3 ± 1	
Cd (mg kg ⁻¹)	<1	<1	<1	<1	<1	<1	
Cr (mg kg ⁻¹)	43 ± 3	39 ± 4	28 ± 2	25 ± 3	45 ± 3	42 ± 5	
Hg (mg kg ⁻¹)	<3	<1	<3	<1	<3	<1	
Ni (mg kg ⁻¹)	3 ± 1	2 ± 1	<3	1 ± 1	12 ± 4	10 ± 2	
Pb (mg kg ⁻¹)	75 ± 5	63 ± 5	104 ± 10	99 ± 10	40 ± 3	39 ± 4	

4. RESULTS

4.4 OBJECTIVE ACHIVEMENT

Objective 1. Reach the quantification limits required

Element	L _Q (mg kg⁻¹)
As	1
Cd	1
Cr	1
Hg	1
Ni	1
Pb	1

Objective 3. Develop an environmentally friendly control method

Use of little quantity of acids and no need of digestion or extraction processes at high temperature **Objective 2.** Decrease the time of analysis to the minimum

Total sample preparation time: 60 min Total measurement time: 30 min Total analysis time: 90 min (less than 2h)

5. CONCLUSIONS

- A new robust and fast quality control method has been developed to ensure the absence of heavy metals in food that are hazardous for humans.
- The method based on a new microwave technology for analyte extraction permits the determination of all the heavy metals studied in a relatively short time.
- A sample preparation method for ICP-OES was optimized, depending on the group of elements to be measured: one for As, Cd, and Hg and another for Cr, Ni, and Pb

5. CONCLUSIONS

- ICP-OES method is suitable as long as the requirements are 1 ppm for all the elements.
- The methodology developed is environmentally friendly, as decreases the amount of acids needed to carry out the sample preparation, and there is no need to use digestion processes at high temperatures.

6. ACKNOWLEDGEMENTS

6. ACKNOWLEDGEMENTS

This study was co-funded by the Generalitat Valenciana, through the Valencian Institute of Business Competitiveness (IVACE), through project IMDEEA/2021/54 and by the FEDER Funds, through the Valencian Community FEDER Operative program 2014-2020

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional

Una manera de hacer Europa

THANKS FOR YOUR ATTENTION

María Fernanda Gazulla Head of the Area for Analyses and Tests marife.gazulla@itc.uji.es

